
Learning to accurately throw Paper Planes using Reinforcement
Learning

Marcus Kornmann1 and Qimeng He2

Abstract— This paper presents a novel approach to optimiz-
ing paper plane throwing using reinforcement learning and
trajectory encoding. We introduce a method that combines
a Variational Autoencoder (VAE) for encoding paper plane
trajectories with a Soft Actor-Critic (SAC) algorithm to learn
optimal throwing strategies. Our approach dynamically adapts
to the unique aerodynamic properties of randomly generated
paper plane designs. We explore two training scenarios: a one-
step setting with a plane store and a multi-step setting with
episode-based trajectory accumulation. Our experiments show
that incorporating information from previous throws improves
performance, particularly when generalizing to unseen plane
designs.

I. INTRODUCTION

Robotic manipulation tasks often involve complex dynam-
ics and control challenges. One such intriguing task is for a
robot to accurately throw paper planes at a target. Despite its
apparent simplicity, this task requires accurate determination
and execution of initial launch conditions, considering the
aerodynamic properties and inertial parameters of the paper
plane. The challenge of robotic paper plane manipulation has
attracted recent attention in the field. For instance, Tanaka
et al. [1] demonstrated a robots’ ability to fold paper planes.
However, the precise launching of these planes remains an
open problem. This task encapsulates core difficulties in
robotics: real-time adaptation to object properties and precise
control of launch parameters. By addressing these challenges,
we aim to advance techniques applicable to a wide range
of dynamic object manipulation tasks. This work focuses
specifically on learning the initial conditions required for
successful throws. To address this challenge, we introduce an
episodic reinforcement learning (RL) framework that aims
at determining the optimal initial velocity and orientation
for launching the plane. It learns from observed trajectories
of past throws, utilizing a MuJoCo simulation environment
[2] as illustrated in Figure 1. Key aspects of our approach
include:

1) RL Environment: We design a RL environment in
which the robot’s actions, setting the plane’s initial
velocity and orientation, determine its trajectory.

2) Domain Randomization: To improve generalization
and facilitate potential transfer to real-world robotic
systems, we randomize the target’s position and the
plane’s properties, ensuring robustness across different
conditions and reducing the sim-to-real gap.

1Development of the learning environment and model training
2Randomization of paper planes

Fig. 1: In MuJoCo we generate a paper plane and set the
relative position with target randomly within a certain range.
Our goal is to throw the paper plane as accurately as possible
onto the target (yellow disc).

3) Latent Trajectory Embeddings: A Variational Autoen-
coder (VAE) [3] generates latent embeddings of the pa-
per plane’s past trajectories. These embeddings capture
patterns in the plane’s flight behavior, which indirectly
reflect its aerodynamic properties without explicitly
modeling them. By learning from these trajectory
patterns, the robot can adapt its throwing technique
to handle each specific plane more effectively.

4) Soft Actor-Critic (SAC) Algorithm [4]: We employ
the SAC algorithm to learn the optimal initial con-
ditions for launching the paper plane. Specifically, this
involves determining the ideal initial orientation and
velocity of the plane based on the current configuration
of the environment and the latent embeddings of past
trajectories.

By leveraging knowledge from previous throws, we can
train an agent capable of handling a variety of paper planes.
This approach eliminates the need for plane-specific agents.
Most importantly, it enables our agent to adapt to unseen
paper planes, using prior throws with the same plane as
references.

II. BACKGROUND

Our approach to the paper plane throwing task integrates
two key machine learning techniques: the Soft Actor-Critic
(SAC) algorithm for reinforcement learning and Variational
Autoencoders (VAEs) for efficient representation learning.
This section provides context on how these methods con-
tribute to our solution.

A. Soft Actor-Critic Algorithm

The Soft Actor-Critic (SAC) algorithm [4] is a rein-
forcement learning method designed for continuous action
spaces. SAC is an off-policy algorithm, meaning it can
learn from previously collected experiences, which often
leads to improved sample efficiency compared to on-policy
methods. It is built upon the maximum entropy reinforcement
learning framework, which encourages the agent to behave
as randomly as possible while still maximizing rewards. This
approach helps in exploration and robustness to environmen-
tal changes. Empirically, SAC has been shown to outperform
other state-of-the-art model-free deep RL methods, such as
the off-policy Deep Deterministic Policy Gradient (DDPG)
algorithm [5] and the on-policy Proximal Policy Optimiza-
tion (PPO) algorithm [6], particularly in tasks requiring
extensive exploration and fine control [4].

B. Variational Autoencoder

Variational Autoencoders (VAEs) [3] are a class of gener-
ative models that learn to encode high-dimensional data into
a lower-dimensional latent space and then decode it back
to the original space. VAEs combine ideas from variational
inference and neural networks to create a powerful tool for
unsupervised learning and representation learning. The key
innovation of VAEs lies in their ability to learn a probabilistic
mapping between the data space and a latent space. This
probabilistic approach allows VAEs to capture uncertainty
and variability in the data, making them particularly useful
for tasks involving complex, high-dimensional data distri-
butions. VAEs have found applications in various domains,
including image and text generation [7, 8], fault detec-
tion [9], and representation learning for downstream tasks.
Their ability to learn meaningful, compact representations
of complex data has made them a valuable tool in many
machine learning pipelines, especially when dealing with
large, unlabeled datasets.

III. RELATED WORK

Since its inception, MuJoCo has quickly become a power-
ful tool for simulating robotics and studying reinforcement
learning algorithm [2]. It is convenient to creat or modify
environment in MuJoCo and it performs well in exploring
reinforcement learning techniques [10].

A. Simulation Environment and Domain Randomization in
MuJoCo

MuJoCo is an open-source physics engine that generates
fast and accurate simulations of articulated structures in-
teracting with their environment [2]. It is widely used in

various fields such as biomechanics, graphics, and especially
robotics. Compared to other physics engines and simulation
tools like DART, Bullet, and PhysX, MuJoCo is both the
fastest and most accurate for constrained systems relevant
to robotics [11]. Therefore, it is a suitable platform for
simulating the task of paper airplane throwing with a robot
and building reinforcement learning environments. After
modeling the paper plane, it is also important to randomize
the parameters of the model in order to generate a diverse
dataset for the reinforcement learning algorithm. Standard
domain randomization is widely used in simulation, but
it often results in high variance data [12]. An alternative
strategy is residual physics [13], which generates a dataset
composed of two parts: analytical models and compensations
for unknown physical phenomena. Similar to this approach,
we first develop a base model in simulation and then incor-
porate physics residuals for specific parameters of interest.

B. Reinforcement Learning in Throwing

Reinforcement learning (RL) has emerged as a primary
tool for tackling the challenge of enabling robots to throw
objects accurately. There are numerous examples where
reinforcement learning has been effectively applied to object
throwing, such as Dart-throwing robot [14], Ball-throwing
Robot [15] and TossingBot [13], which demonstrate its
potential to improve the accuracy of robotic object-throwing
through continuous interaction with the environment. For
a dart-throwing robot, the environmental factors such as
aerodynamics have relatively little impact on the dart motion.
As for the TossingBot, it focuses on the joint learning
of grasping and throwing arbitrary objects. Reinforcement
learning is also widely employed to solve locomotion prob-
lem such as quadrupedal locomotion over uneven terrain [16,
17] and performs excellently in generating a feedback-based
trajectory tracking system [18].

IV. METHODS

This section details our approach to training a reinforce-
ment learning agent to accurately throw paper planes. We
begin by describing our domain randomization technique for
generating diverse paper plane models. We then explain how
we handle different plane behaviors using a Variational Au-
toencoder (VAE) to encode trajectory information. Next, we
formulate the problem as a Markov Decision Process (MDP)
and describe our chosen reinforcement learning algorithm.
Finally, we outline our training process and the two distinct
scenarios we use to evaluate our approach.

A. Domain Randomization

Even if you fold two paper planes using the same proce-
dure and paper, there will still be slight differences between
them, and often, the two sides of the same paper plane are
asymmetrical. Therefore, to simulate the act of throwing a
paper plane more realistically, we randomize parameters of a
symmetrical paper plane model to generate asymmetry. Here
we choose some physical properties such as the position of
center of mass (CoM), the angle and the size of the wings and

Fig. 2: Paper plane model generated in MuJoCo randomly
based on a standard symmetric paper plane. We change the
coordinates of vertices of paper plane to change the length
and angle of wings and winglets asymmetrically, and change
position of extra mass point to get asymmetrical inertia.

Fig. 3: The trajectory of throwing an symmetrical paper plane
model, the initial location is (0,0,3m) and initial vilocity is
(0,10m/s,0), model is rotated 40◦ around X axis which as its
intial orientation.

Fig. 4: Illustration of the sum of squared distances between
the wing’s changing trajectory and the base trajectory under
the same initial conditions. The unit of delta is meter.

Fig. 5: Illustration of the sum of squared distances between
the winglets’ changing trajectory and the base trajectory
under the same initial conditions. The unit of delta is meter.

winglets (small hinged sections on the outboard portion of a
wing). The MuJoCo model of paper plane is shown in figure
2. We change the coordinates of extra mass point to change
the intertia, change the coordinates of some vertices(A, A’,
B, B’, C, C’) of paper plane model to change the angle
and size of wings and winglets. We aim to training the
throw of as many different types of paper planes as possible
without concern for the likelihood of these planes appearing
in real life, so we use uniform distribution to randomize these
parameters. Before randomizing the parameters we simulate
the throwing with different model parameters in the same
initial conditions, such as initial velocity and location, to see
how these parameters influence the trajectory. In Figure 3
we can see the trajectory when throwing a symmetrical paper
plaen model. In order to represent the data more compact, we

Po
si

tio
na

l E
nc

od
in

g

Li
ne

ar
 L

ay
er

 +
 R

eL
U

M
ul

ti-
H

ea
d

Se
lf-

At
te

nt
io

n

Li
ne

ar
 L

ay
er

Li
ne

ar
 L

ay
er

 +
 R

eL
U

Li
ne

ar
 L

ay
er

z

Li
ne

ar
 L

ay
er

 +
 R

eL
U

Po
si

tio
na

l E
nc

od
in

g

M
ul

ti-
H

ea
d

Se
lf-

At
te

nt
io

n

LS
TM

Li
ne

ar
 L

ay
er

Tr
aj

ec
to

ry

R
ec

on
st

ru
ct

ed
 T

ra
je

ct
or

y

Fig. 6: Architecture of the Variational Autoencoder (VAE) used for learning latent representations of paper plane trajectories.
The encoder (left) processes variable-length input sequences using sinusoidal positional encoding, multi-head attention, and
fully connected layers to generate the latent distribution z. The decoder (right) takes a sample z from the latent distribution
and reconstructs the input sequence using positional encoding, multi-head attention, an LSTM layer, and a final linear layer.
The VAE architecture enables the model to handle trajectories of different lengths and capture the essential aerodynamic
behavior of the paper planes in the latent space.

compute the sum of squared distance(SSD) of coordinates
of two different trajectory to observe the overall impact
of parameter chaging on the flight trajectory. The initial
Z axis of B and B’ is 0.05m, when we change it in a
range (0.04,0.06), we can observe that overall the values of
SSD is small and the impact of the plane’s wings bending
downward is greater than that of bending upward. But when
we change the height of winglets, value of Z axis of C and
C’, the impact is more remarkbale. Here the changing range
is (0.043,0.063), in Fig 5 we can see that if we bend down or
up the winglets out of a small range,especially the situation
of bending down, the trajectory will change a lot.

For stable flight, we try to fold symmetrical paper planes
as much as possible, but it is difficult to achieve perfectly.
Therefore, our parameter randomization follows a similar ap-
proach: Based on a symmetric model we add a small amount
of noise to parameters which obeys a uniform distribution.
The position of the target is sampled from a variable circle
around the origin defined by a 3-tuple (rtarget, αtarget, ztarget)
where rtarget ∼ U(4, 10) [meters] is the radius of this circle,
αtarget ∼ U(−30, 30) [degrees] is the angle to the target
relative to a reference orientation and ztarget ∼ U(0.5, 2.2)
[meters] is the z-coordinate of the target. The interaction
between these parameters can be seen in figure 7.

B. Handling different plane behaviors

Due to the randomization of plane properties, each plane
exhibits unique aerodynamic behaviors. To account for this
variability, the agent is designed to learn about the plane’s
behavior from the trajectories of previous throws of the
same plane. This approach avoids explicitly learning from
the physical characteristics of the plane, which could ex-
acerbate the sim-to-real gap. Such physical information is
often difficult to obtain from real paper planes, making

6 4 2 0 2 4 6
X-axis

0

2

4

6

8

10

12

Y-
ax

is

target

ztarget

rtarget

target

Fig. 7: Illustration of the constraints and parameters defining
target positions. The target always lies within the area
bounded by the angle range (depicted by black diagonal
lines) and the radius limits (shown as green circular arcs).
Each target point is uniquely characterized by three parame-
ters: its angle from the y-axis (α), its radial distance on the
x-y plane, and its height (z) above this plane.

...

pos_x
pos_y
pos_z
vel_x
vel_y
vel_z

Plane Store

plane configs

previous trajectories

previous trajectories

Sampled Plane

XML

Plane Config

Simulation

State
...

new Trajectory

RL UpdateReward

Trajectory Batch

Parameter
Update &

Clear Batch

new Trajectory

Target
Randomization

Environment
Generation

Fig. 8: Schematic representation of the paper plane throwing optimization approach. The system comprises a plane store
containing diverse plane configurations and their previous throw trajectories, an environment generator, a Variational
Autoencoder (VAE) for trajectory encoding, and a Reinforcement Learning (RL) agent. Each iteration involves: (1) Random
plane selection from the store; (2) Environment XML generation based on plane configuration and target randomization;
(3) State generation by combining environmental information with VAE-encoded previous trajectories; (4) RL agent update
based on simulation reward; (5) Periodic batch updates of the VAE using collected trajectories (online training), followed
by trajectory discard. The VAE is trained to reconstruct throw trajectories, while the RL agent learns to optimize throwing
strategies.

our method more applicable to real-world scenarios. Also,
different combinations of physics parameters can result in the
same behavior. For us, only the differences in behavior are
relevant. Each trajectory point consists of the plane’s position
p, velocity v, and orientation o. Given that trajectories can
vary in length, they are not passed directly to the model.
Instead, a latent embedding of the trajectory is generated
to provide a compact representation of the plane’s behavior.
To create latent embeddings of the trajectories, we employ
a Variational Autoencoder (VAE). The VAE processes se-
quences of different lengths and generates a latent represen-
tation that encapsulates the plane’s aerodynamic behavior.
The architecture of the VAE is as follows, see figure 6 for
more details:

• Encoder: The encoder uses sinusoidal positional en-
coding [19], followed by a linear layer and a ReLU
activation function. This is followed by multi-head
attention [19], another linear layer with ReLU, and
finally two separate linear layers that output the mean
(µ) and logarithm of the variance (logσ2) of the latent

distribution.
• Decoder: The decoder consists of a linear layer, si-

nusoidal positional encoding, multi-head attention, a
LSTM layer, and a final linear layer. The input to the
decoder is the latent representation z = µ+σ2 · ϵ with
ϵ ∼ N (0, I).

We choose this architecture for our VAE model because
it effectively addresses the challenges posed by variable-
length trajectory data. The combination of Attention and
LSTM enables the model to handle sequences of different
lengths, capture long-range dependencies, and encode con-
textual information. The multi-head attention mechanism in
the encoder allows the model to focus on relevant parts
of the input trajectory, generating a rich and informative
latent representation. The LSTM layer in the decoder helps
maintain the temporal coherence of the generated trajectories
by capturing and utilizing the relevant information from
the entire sequence. Additionally, the sinusoidal positional
encoding in both the encoder and decoder preserves the
temporal structure and ordering of the points in the trajectory.

C. Markov Decision Process (MDP)

Our environment is modeled as a MDP = (S,A,R, T , γ).
Every state s ∈ S is represented as a tuple
(zinitial, ztarget, d,v, z1, . . . , zn). The first components
are a representation of the current setup, while the later
components (z1, . . . , zn) encode the trajectories of previous
throws. zinitial and ztarget are the z-coordinates of the initial
and target position, d is the Euclidean distance between the
plane and the target, and v is the normalized difference
between the plane’s initial position and the target’s position.
Specifically, v is calculated by taking the elementwise
difference between the target position and the initial
position and normalizing this difference vector so that
its components sum to 1. This state representation was
chosen to ensure spatial invariance, allowing the model to
generalize across different throwing scenarios regardless
of absolute position in 3D space. z1, . . . zn are the latent
representations of the n previous throws with the same
plane. If fewer than n throws have been recorded, the
missing values are filled with zeros. An action a ∈ A is
a 3-tuple, setting the initial orientation around the x- and
z-axis and the initial speed in meters per second along
this orientation. The reward r ∼ R(·|s, a) is the negative
minimal distance of the plane to the target during the whole
trajectory. The specific implementation of the transition
model T and the choice of discount factor γ depend on
the training scenario, as detailed in the Training Scenarios
subsection.

D. RL Algorithm

For the reinforcement learning algorithm, we utilize the
Soft Actor-Critic (SAC) algorithm from the stable baselines3
library [20]. The agent learns to map the current state to an
action that specifies the initial velocity and orientation of the
paper plane.

E. Training

We use a Variational Autoencoder (VAE) with the follow-
ing loss function:

LVAE = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||p(z))

where qϕ(z|x) is the encoder and pθ(x|z) is the decoder. The
VAE is initially pre-trained on a set of collected trajectories
from our simulated paper plane models. Subsequently, it is
trained online alongside the SAC model, but with different
update frequencies. The SAC model updates after every
episode. In contrast, the VAE is updated every k throws
(iterations). During each VAE update, we perform a training
step on the trajectories collected over the past k throws. After
this VAE training step, these trajectories are discarded, and
new data is collected for the next update.

F. Training Scenarios

We explore two distinct training scenarios to evaluate our
approach:

1) One-step setting with plane store: In this scenario,
we maintain a plane store that contains the trajectories
of previous throws along with their corresponding plane
designs. When sampling a plane for training, we also fetch its
associated trajectories. This approach ensures that we train
with a full buffer of previous throws for all but the first
5 throws with each plane. The environment is modeled as
a one-step setting, where each episode consists of a single
throw, and the trajectories from previous throws serve as
background knowledge for the agent. In this scenario, the
transition model T is not explicitly used as each throw is
treated independently. The discount factor γ also does not
impact the learning in this scenario. Figure 8 shows the
interactions between all components during training.

2) Multistep setting with episode-based trajectory accu-
mulation: In this scenario, we model our environment as
a multistep setting. Each episode involves throwing a plane
n + 1 times, where n is the size of the buffer for previous
trajectories. Every episode begins with an empty buffer,
which is gradually filled throw by throw. In this setting, the
previous trajectories are an integral part of the state, allowing
the agent to learn and adapt its strategy within each episode.
For this scenario, the transition model T resets the plane
to its initial position after each throw within an episode. We
set the discount factor γ to 0.99, giving higher importance to
later throws which benefit from more accumulated trajectory
information. The interaction between components remains
consistent across scenarios, as illustrated in Figure 8 for the
first training scenario. The key distinction lies in the handling
of previous trajectories: rather than being stored separately in
the plane store, they are incorporated directly into the state
representation.

V. EXPERIMENTS
Our experiments are designed to achieve two primary

goals:
1) Identify a suitable range of parameters for randomizing

the paper planes.
2) Train a model on a set of planes using the parameters

identified in step 1.
To establish a feasible range of paper plane designs for

our study, we focus on optimizing parameters for the plane’s
winglet. Optimizing multiple parameters simultaneously can
be challenging due to their complex interactions. By focusing
on the winglet, we can more effectively manage the complex-
ity of our experimental design while at the same time sig-
nificantly influencing a plane’s aerodynamic properties. The
parameter selection process involves training our model on
a diverse set of 130 randomly generated plane designs, with
each design’s agent undergoing 5000 iterations of training.
This approach helps us identify a range of plane designs for
which our algorithm can effectively learn to hit the target,
while still allowing us to test our model’s ability to generalize
across different plane configurations within this established
range. Next, we use planes generated from the identified
parameter range to collect a set of trajectories, which are
then used to pre-train our VAE. We set the dimension for

0 2000 4000 6000 8000 10000 12000 14000
Episodes

3.5

3.0

2.5

2.0

1.5

1.0

0.5

M
ea

n
Re

wa
rd

n=0
n=5

Fig. 9: Reward progression during training. Each point
represents the mean reward over 100 episodes. The orange
line indicates the reward for an agent utilizing up to five tra-
jectories from previous throws, while the blue line shows the
reward for an agent relying solely on current environmental
information, without considering past throws.

the hidden linear layers to 16 and the dimension of the latent
space to 8. As discussed in the methods chapter, each point in
a trajectory consists of a 10-dimensional vector, so our input
dimension is 10. We train the VAE for 15 epochs using the
Adam [21] optimizer with a learning rate of 10−3. The pre-
trained VAE serves as the initialization for all subsequent
experiments. Finally, we train the SAC model, varying the
number n of previous throws considered. The SAC policy is
initialized randomly, while the VAE is initialized using the
pre-trained VAE. Both models are trained simultaneously, as
described in the methods section.

A. Implementation of Training Scenarios

As described in the Methods section, we implement two
distinct training scenarios: a one-step setting with a plane
store and a multistep setting with episode-based trajectory
accumulation. Here, we detail the specific parameters and
implementation choices for each scenario.

1) One-step Setting Implementation: For the one-step
setting we use a plane store containing 10 different plane
designs. We compare a setting where each plane was asso-
ciated with 5 previous throws to a setting where the agent
has no knowledge about prior throws.

2) Multistep Setting Implementation: For the multistep
setting we also use a set of 10 different plane designs. Each
episode consists of n+1 throws, where n = 5. We train the
agent for 15000 episodes. The buffer of previous trajectories
starts empty at the beginning of each episode and is filled
progressively.

VI. RESULTS

We present our findings from the two training scenarios:
(1) a one-step setting with a plane store, and (2) a multistep
setting with episode-based trajectory accumulation.

3.50

3.25

3.00

2.75

2.50

2.25

2.00

1.75

1.50
Throw 1 Throw 2 Throw 3

0 50 100
3.50

3.25

3.00

2.75

2.50

2.25

2.00

1.75

1.50
Throw 4

0 50 100

Throw 5

0 50 100

Throw 6

Fig. 10: Evolution of rewards across multiple throws within
a single episode. Each subplot represents a sequential throw,
with the x-axis showing training steps and the y-axis indi-
cating the reward. Data points are aggregated over multiple
iterations to improve readability. The darker line represents
the mean reward, while the shaded area depicts the standard
deviation. Throw 1 begins without prior information, while
each subsequent throw incorporates data from all preceding
throws in the episode.

A. Scenario 1: One-step Setting with Plane Store

We conduct a comparative analysis of two distinct models:
one that exclusively considers the environmental config-
uration, and another that incorporates both environmental
factors as well as the trajectories of up to five previous
throws. As illustrated in Figure 9, the model focusing solely
on environmental information initially demonstrates superior
performance. However, as the simulation progresses, the
model that utilizes individual plane behavior data achieves
better performance. The benefits of incorporating information
from previous throws become even more evident when
evaluating the models’ performance on a set of 20 previously
unseen paper planes. In these novel scenarios, the model that
utilizes prior throw information consistently outperforms the
model that relies exclusively on environmental configuration.
Table I presents a comprehensive comparison of rewards
across different models when tested on these unseen planes.

B. Scenario 2: Multi-step Setting with Episode-based Tra-
jectory Accumulation

Figure 10 illustrates the evolution of agent performance
across multiple throws within a single episode, providing
insights into how the accumulation of trajectory informa-
tion impacts the agent’s ability to optimize its throwing

Number of previous trajectories Reward
0 −0.4913± 0.2461
5 −0.3676± 0.1827

TABLE I: Performance comparison between two models for
predicting paper plane trajectories. The first model uses no
reference trajectories, while the second model incorporates
information from 5 previous throws of the same plane. Each
model is evaluated on a test set of 20 unseen planes, and the
average reward across these planes is reported.

Throw number Reward
1 −2.1175± 1.2290
2 −1.9544± 0.8115
3 −2.0931± 0.8646
4 −2.1432± 0.5443
5 −2.1525± 0.9796
6 −2.3030± 1.0560

TABLE II: Mean rewards and standard deviations for each
throw across 300 episodes with 20 unseen plane designs.

strategy. The performance of the first throw, which occurs
without any prior trajectory information, initially shows an
upward trend. However, we observe a subsequent decline
in performance as training progresses. In contrast to the
first throw, the second throw, which incorporates information
from the trajectory of the first throw, demonstrates consistent
improvement throughout the training process. Interestingly,
the performance of throws that utilize information from
multiple previous trajectories (throws 3-6) exhibits oscilla-
tory behavior. Moreover, we observe that as the number of
previous trajectories used increases, there is a trend towards
decreased performance. Table II presents the mean rewards
and standard deviations for each throw across 300 episodes,
using 20 unseen paper plane designs. The data is aggregated
from three different models trained with the same parameters
but different random seeds. These results corroborate our
earlier findings from figure 10.

VII. DISCUSSION

Our study revealed distinct patterns in agent performance
across two training scenarios, each offering insights into
the role of historical trajectory information in optimizing
paper plane throws. In the first training scenario, we observe
an initial advantage for the agent not utilizing previous
throw trajectories. This early success can be attributed to
the effectiveness of a consistent throwing strategy in the
initial stages, which facilitates rapid progress. However, after
approximately 8000 iterations, the model leveraging past
throws as reference demonstrates superior performance. This
improvement likely stems from its ability to utilize informa-
tion about each paper plane’s specific flight characteristics,
enabling more precise and tailored throws.

In the second training scenario, during training, we ob-
serve an initial improvement in the first throw’s performance,
followed by a decline. This pattern suggests an initial learn-
ing phase where the agent develops a baseline strategy based

on environmental conditions alone. However, the subsequent
drop in performance might indicate overfitting to certain
plane designs or environmental conditions, potentially at
the expense of generalization. The high variability observed
in the first throw with unseen planes further supports this
interpretation, highlighting the challenge of generalizing
to new designs without prior trajectory information. The
consistent improvement in the second throw’s performance,
both during training and with unseen planes, underscores
the value of even a single previous trajectory in enhancing
the agent’s decision-making. This suggests that the agent
can effectively leverage this limited historical data to refine
its throwing strategy and achieve better outcomes. While
information from a single previous throw proves beneficial,
our results show a decline in performance for later throws.
This unexpected trend could be attributed to several fac-
tors: (1) Insufficient capacity or complexity to effectively
process multiple trajectories, (2) current representations of
trajectories are not covering the information good enough,
(3) overspecialization to specific throw sequences. To disen-
tangle these factors and gain a deeper understanding of which
aspects of the trajectories are most informative, ablation
studies would be valuable in future research. Qualitative
observations of throw recordings suggest a potential change
in the agent’s strategy: the first throw often exhibited high
velocity aimed directly in the direction of the target, while
subsequent throws, including the second, appeared to use
lower velocities. This change in approach coincides with the
availability of previous trajectory information. However, it’s
important to note that this observation is based on qualitative
review and not quantitative analysis.

VIII. FUTURE WORK

The findings of this work highlight a crucial area for im-
mediate investigation: understanding why information from
the first throw improves the second throw’s performance,
while additional trajectory information appears to be less
beneficial or even detrimental. This phenomenon warrants
a detailed analysis as it could provide valuable insights into
the nature of the information being captured and how it’s
being utilized by the current model. Ablation studies should
be performed to isolate the impact of different components
of the trajectory information. This could help identify which
aspects of the previous throws are most informative for sub-
sequent throws, and why this information might become less
useful over time. Only after gaining a deeper understanding
of these dynamics should scaling up the model size be
considered, particularly the VAE component. If the analysis
suggests that the current model is indeed capacity-limited,
increasing its size could potentially address the observed
performance decline when processing multiple trajectories.
An important direction for future work is increasing the
complexity of the paper plane model. While the current work
focuses on optimizing parameters for the plane’s winglet to
manage complexity, future iterations should explore random-
izing a broader range of parameters.

IX. CONCLUSIONS
Our study demonstrates the effectiveness of combining

reinforcement learning with trajectory encoding for optimiz-
ing paper plane throwing strategies. The proposed method,
integrating a VAE for encoding throw trajectories with an
SAC algorithm for action selection, shows improvements
over approaches relying solely on environmental information.
By incorporating data from previous throws, our model
successfully adapts to the unique flight characteristics of
individual paper planes, resulting in more accurate throws,
especially for unseen designs. However, we observed di-
minishing returns when using multiple previous trajectories,
highlighting areas for future research. These findings not
only advance paper plane throwing optimization but also of-
fer insights for broader applications in robotics and dynamic
object manipulation tasks.

REFERENCES

[1] Ruoshi Liu et al. “PaperBot: Learning to Design
Real-World Tools Using Paper”. In: arXiv preprint
arXiv:2403.09566 (2024).

[2] Emanuel Todorov, Tom Erez, and Yuval Tassa. “Mu-
JoCo: A physics engine for model-based control”. In:
2012 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems. 2012, pp. 5026–5033. DOI:
10.1109/IROS.2012.6386109.

[3] Diederik P Kingma. “Auto-encoding variational
bayes”. In: arXiv preprint arXiv:1312.6114 (2013).

[4] Tuomas Haarnoja et al. “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with
a stochastic actor”. In: International conference on
machine learning. PMLR. 2018, pp. 1861–1870.

[5] Timothy P. Lillicrap et al. “Continuous con-
trol with deep reinforcement learning”. In: CoRR
abs/1509.02971 (2015).

[6] John Schulman et al. “Proximal Policy Optimization
Algorithms”. In: CoRR abs/1707.06347 (2017).

[7] Mohamed El-Kaddoury, Abdelhak Mahmoudi, and
Mohammed Majid Himmi. “Deep Generative Models
for Image Generation: A Practical Comparison Be-
tween Variational Autoencoders and Generative Ad-
versarial Networks”. In: Mobile, Secure, and Pro-
grammable Networking. Cham: Springer International
Publishing, 2019, pp. 1–8. ISBN: 978-3-030-22885-9.

[8] Stanislau Semeniuta, Aliaksei Severyn, and Er-
hardt Barth. “A hybrid convolutional variational au-
toencoder for text generation”. In: arXiv preprint
arXiv:1702.02390 (2017).

[9] Xiaoan Yan, Daoming She, and Yadong Xu. “Deep
order-wavelet convolutional variational autoencoder
for fault identification of rolling bearing under fluc-
tuating speed conditions”. In: Expert Systems with
Applications 216 (2023), p. 119479.

[10] Vaddadi Sai Rahul and Debajyoti Chakraborty. “Ex-
ploring reinforcement learning techniques for discrete
and continuous control tasks in the MuJoCo environ-
ment”. In: arXiv preprint arXiv:2307.11166 (2023).

[11] Tom Erez, Yuval Tassa, and Emanuel Todorov. “Sim-
ulation tools for model-based robotics: Comparison of
bullet, havok, mujoco, ode and physx”. In: 2015 IEEE
international conference on robotics and automation
(ICRA). IEEE. 2015, pp. 4397–4404.

[12] Reda Bahi Slaoui et al. “Robust domain randomization
for reinforcement learning”. In: (2019).

[13] Andy Zeng et al. “TossingBot: Learning to Throw
Arbitrary Objects With Residual Physics”. In: IEEE
Transactions on Robotics 36.4 (2020), pp. 1307–1319.
DOI: 10.1109/TRO.2020.2988642.

[14] Chihiro Obayashi, Tomoya Tamei, and Tomohiro
Shibata. “Assist-as-needed robotic trainer based on
reinforcement learning and its application to dart-
throwing”. In: Neural Networks 53 (2014), pp. 52–60.

[15] Yeong-Gyun Kang and Cheol-Soo Lee. “Deep Rein-
forcement Learning of Ball Throwing Robot’s Policy
Prediction”. In: The Journal of Korea Robotics Society
15.4 (2020), pp. 398–403.

[16] Vassilios Tsounis et al. “DeepGait: Planning and Con-
trol of Quadrupedal Gaits Using Deep Reinforcement
Learning”. In: IEEE Robotics and Automation Letters
5.2 (2020), pp. 3699–3706. DOI: 10.1109/LRA.
2020.2979660.

[17] Joonho Lee et al. “Learning quadrupedal locomotion
over challenging terrain”. In: Science robotics 5.47
(2020), eabc5986.

[18] Siddhant Gangapurwala et al. “Real-time trajectory
adaptation for quadrupedal locomotion using deep
reinforcement learning”. In: 2021 IEEE International
Conference on Robotics and Automation (ICRA).
IEEE. 2021, pp. 5973–5979.

[19] A Vaswani. “Attention is all you need”. In: Advances
in Neural Information Processing Systems (2017).

[20] Antonin Raffin et al. “Stable-Baselines3: Reliable Re-
inforcement Learning Implementations”. In: Journal
of Machine Learning Research 22.268 (2021), pp. 1–8.
URL: http://jmlr.org/papers/v22/20-
1364.html.

[21] P Kingma Diederik. “Adam: A method for stochastic
optimization”. In: (No Title) (2014).

